Metamath Proof Explorer


Theorem chj00i

Description: Two Hilbert lattice elements are zero iff their join is zero. (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 AC
chjcl.2 BC
Assertion chj00i A=0B=0AB=0

Proof

Step Hyp Ref Expression
1 ch0le.1 AC
2 chjcl.2 BC
3 oveq12 A=0B=0AB=00
4 h0elch 0C
5 4 chj0i 00=0
6 3 5 eqtrdi A=0B=0AB=0
7 1 2 chub1i AAB
8 sseq2 AB=0AABA0
9 7 8 mpbii AB=0A0
10 1 chle0i A0A=0
11 9 10 sylib AB=0A=0
12 2 1 chub2i BAB
13 sseq2 AB=0BABB0
14 12 13 mpbii AB=0B0
15 2 chle0i B0B=0
16 14 15 sylib AB=0B=0
17 11 16 jca AB=0A=0B=0
18 6 17 impbii A=0B=0AB=0