| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0p1nn |  | 
						
							| 2 |  | nnuz |  | 
						
							| 3 | 1 2 | eleqtrdi |  | 
						
							| 4 |  | elfznn |  | 
						
							| 5 | 4 | adantl |  | 
						
							| 6 |  | vmacl |  | 
						
							| 7 | 5 6 | syl |  | 
						
							| 8 | 7 | recnd |  | 
						
							| 9 |  | fveq2 |  | 
						
							| 10 | 3 8 9 | fsumm1 |  | 
						
							| 11 |  | nn0re |  | 
						
							| 12 |  | peano2re |  | 
						
							| 13 |  | chpval |  | 
						
							| 14 | 11 12 13 | 3syl |  | 
						
							| 15 |  | nn0z |  | 
						
							| 16 | 15 | peano2zd |  | 
						
							| 17 |  | flid |  | 
						
							| 18 | 16 17 | syl |  | 
						
							| 19 | 18 | oveq2d |  | 
						
							| 20 | 19 | sumeq1d |  | 
						
							| 21 | 14 20 | eqtrd |  | 
						
							| 22 |  | chpval |  | 
						
							| 23 | 11 22 | syl |  | 
						
							| 24 |  | flid |  | 
						
							| 25 | 15 24 | syl |  | 
						
							| 26 |  | nn0cn |  | 
						
							| 27 |  | ax-1cn |  | 
						
							| 28 |  | pncan |  | 
						
							| 29 | 26 27 28 | sylancl |  | 
						
							| 30 | 25 29 | eqtr4d |  | 
						
							| 31 | 30 | oveq2d |  | 
						
							| 32 | 31 | sumeq1d |  | 
						
							| 33 | 23 32 | eqtrd |  | 
						
							| 34 | 33 | oveq1d |  | 
						
							| 35 | 10 21 34 | 3eqtr4d |  |