Metamath Proof Explorer


Theorem chtrpcl

Description: Closure of the Chebyshev function in the positive reals. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion chtrpcl A2AθA+

Proof

Step Hyp Ref Expression
1 chtcl AθA
2 1 adantr A2AθA
3 0red A2A0
4 2re 2
5 1lt2 1<2
6 rplogcl 21<2log2+
7 4 5 6 mp2an log2+
8 rpre log2+log2
9 7 8 mp1i A2Alog2
10 rpgt0 log2+0<log2
11 7 10 mp1i A2A0<log2
12 cht2 θ2=log2
13 chtwordi 2A2Aθ2θA
14 4 13 mp3an1 A2Aθ2θA
15 12 14 eqbrtrrid A2Alog2θA
16 3 9 2 11 15 ltletrd A2A0<θA
17 2 16 elrpd A2AθA+