Metamath Proof Explorer


Theorem clatlem

Description: Lemma for properties of a complete lattice. (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses clatlem.b B=BaseK
clatlem.u U=lubK
clatlem.g G=glbK
Assertion clatlem KCLatSBUSBGSB

Proof

Step Hyp Ref Expression
1 clatlem.b B=BaseK
2 clatlem.u U=lubK
3 clatlem.g G=glbK
4 simpl KCLatSBKCLat
5 1 fvexi BV
6 5 elpw2 S𝒫BSB
7 6 biimpri SBS𝒫B
8 7 adantl KCLatSBS𝒫B
9 1 2 3 isclat KCLatKPosetdomU=𝒫BdomG=𝒫B
10 9 biimpi KCLatKPosetdomU=𝒫BdomG=𝒫B
11 10 adantr KCLatSBKPosetdomU=𝒫BdomG=𝒫B
12 11 simprld KCLatSBdomU=𝒫B
13 8 12 eleqtrrd KCLatSBSdomU
14 1 2 4 13 lubcl KCLatSBUSB
15 11 simprrd KCLatSBdomG=𝒫B
16 8 15 eleqtrrd KCLatSBSdomG
17 1 3 4 16 glbcl KCLatSBGSB
18 14 17 jca KCLatSBUSBGSB