Metamath Proof Explorer


Theorem cldcss

Description: Corollary of the Projection Theorem: A topologically closed subspace is algebraically closed in Hilbert space. (Contributed by Mario Carneiro, 17-Oct-2015)

Ref Expression
Hypotheses cldcss.v V = Base W
cldcss.j J = TopOpen W
cldcss.l L = LSubSp W
cldcss.c C = ClSubSp W
Assertion cldcss W ℂHil U C U L U Clsd J

Proof

Step Hyp Ref Expression
1 cldcss.v V = Base W
2 cldcss.j J = TopOpen W
3 cldcss.l L = LSubSp W
4 cldcss.c C = ClSubSp W
5 hlphl W ℂHil W PreHil
6 4 3 csslss W PreHil U C U L
7 5 6 sylan W ℂHil U C U L
8 hlcph W ℂHil W CPreHil
9 4 2 csscld W CPreHil U C U Clsd J
10 8 9 sylan W ℂHil U C U Clsd J
11 7 10 jca W ℂHil U C U L U Clsd J
12 5 3ad2ant1 W ℂHil U L U Clsd J W PreHil
13 eqid proj W = proj W
14 13 4 pjcss W PreHil dom proj W C
15 12 14 syl W ℂHil U L U Clsd J dom proj W C
16 2 3 13 pjth2 W ℂHil U L U Clsd J U dom proj W
17 15 16 sseldd W ℂHil U L U Clsd J U C
18 17 3expb W ℂHil U L U Clsd J U C
19 11 18 impbida W ℂHil U C U L U Clsd J