Metamath Proof Explorer


Theorem clddisj

Description: Two ways of saying that two closed sets are disjoint, if J is a topology and X is a closed set. An alternative proof is similar to that of opndisj with elssuni replaced by the combination of cldss and eqid . (Contributed by Zhi Wang, 6-Sep-2024)

Ref Expression
Assertion clddisj Z=JXYClsdJ𝒫ZYClsdJXY=

Proof

Step Hyp Ref Expression
1 elin YClsdJ𝒫ZYClsdJY𝒫Z
2 simpl Z=JXYClsdJZ=JX
3 cldrcl YClsdJJTop
4 clduni JTopClsdJ=J
5 4 difeq1d JTopClsdJX=JX
6 3 5 syl YClsdJClsdJX=JX
7 6 adantl Z=JXYClsdJClsdJX=JX
8 2 7 eqtr4d Z=JXYClsdJZ=ClsdJX
9 opndisj Z=ClsdJXYClsdJ𝒫ZYClsdJXY=
10 1 9 bitr3id Z=ClsdJXYClsdJY𝒫ZYClsdJXY=
11 10 pm5.32dra Z=ClsdJXYClsdJY𝒫ZXY=
12 8 11 sylancom Z=JXYClsdJY𝒫ZXY=
13 12 pm5.32da Z=JXYClsdJY𝒫ZYClsdJXY=
14 1 13 bitrid Z=JXYClsdJ𝒫ZYClsdJXY=