Metamath Proof Explorer


Theorem clddisj

Description: Two ways of saying that two closed sets are disjoint, if J is a topology and X is a closed set. An alternative proof is similar to that of opndisj with elssuni replaced by the combination of cldss and eqid . (Contributed by Zhi Wang, 6-Sep-2024)

Ref Expression
Assertion clddisj Z = J X Y Clsd J 𝒫 Z Y Clsd J X Y =

Proof

Step Hyp Ref Expression
1 elin Y Clsd J 𝒫 Z Y Clsd J Y 𝒫 Z
2 simpl Z = J X Y Clsd J Z = J X
3 cldrcl Y Clsd J J Top
4 clduni J Top Clsd J = J
5 4 difeq1d J Top Clsd J X = J X
6 3 5 syl Y Clsd J Clsd J X = J X
7 6 adantl Z = J X Y Clsd J Clsd J X = J X
8 2 7 eqtr4d Z = J X Y Clsd J Z = Clsd J X
9 opndisj Z = Clsd J X Y Clsd J 𝒫 Z Y Clsd J X Y =
10 1 9 bitr3id Z = Clsd J X Y Clsd J Y 𝒫 Z Y Clsd J X Y =
11 10 pm5.32dra Z = Clsd J X Y Clsd J Y 𝒫 Z X Y =
12 8 11 sylancom Z = J X Y Clsd J Y 𝒫 Z X Y =
13 12 pm5.32da Z = J X Y Clsd J Y 𝒫 Z Y Clsd J X Y =
14 1 13 syl5bb Z = J X Y Clsd J 𝒫 Z Y Clsd J X Y =