Metamath Proof Explorer


Theorem cldlp

Description: A subset of a topological space is closed iff it contains all its limit points. Corollary 6.7 of Munkres p. 97. (Contributed by NM, 26-Feb-2007)

Ref Expression
Hypothesis lpfval.1 X=J
Assertion cldlp JTopSXSClsdJlimPtJSS

Proof

Step Hyp Ref Expression
1 lpfval.1 X=J
2 1 iscld3 JTopSXSClsdJclsJS=S
3 1 clslp JTopSXclsJS=SlimPtJS
4 3 eqeq1d JTopSXclsJS=SSlimPtJS=S
5 ssequn2 limPtJSSSlimPtJS=S
6 4 5 bitr4di JTopSXclsJS=SlimPtJSS
7 2 6 bitrd JTopSXSClsdJlimPtJSS