Metamath Proof Explorer


Theorem cldval

Description: The set of closed sets of a topology. (Note that the set of open sets is just the topology itself, so we don't have a separate definition.) (Contributed by NM, 2-Oct-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis cldval.1 X=J
Assertion cldval JTopClsdJ=x𝒫X|XxJ

Proof

Step Hyp Ref Expression
1 cldval.1 X=J
2 1 topopn JTopXJ
3 pwexg XJ𝒫XV
4 rabexg 𝒫XVx𝒫X|XxJV
5 2 3 4 3syl JTopx𝒫X|XxJV
6 unieq j=Jj=J
7 6 1 eqtr4di j=Jj=X
8 7 pweqd j=J𝒫j=𝒫X
9 7 difeq1d j=Jjx=Xx
10 eleq12 jx=Xxj=JjxjXxJ
11 9 10 mpancom j=JjxjXxJ
12 8 11 rabeqbidv j=Jx𝒫j|jxj=x𝒫X|XxJ
13 df-cld Clsd=jTopx𝒫j|jxj
14 12 13 fvmptg JTopx𝒫X|XxJVClsdJ=x𝒫X|XxJ
15 5 14 mpdan JTopClsdJ=x𝒫X|XxJ