Metamath Proof Explorer


Theorem climaddf

Description: A version of climadd using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses climaddf.1 kφ
climaddf.2 _kF
climaddf.3 _kG
climaddf.4 _kH
climaddf.5 Z=M
climaddf.6 φM
climaddf.7 φFA
climaddf.8 φHX
climaddf.9 φGB
climaddf.10 φkZFk
climaddf.11 φkZGk
climaddf.12 φkZHk=Fk+Gk
Assertion climaddf φHA+B

Proof

Step Hyp Ref Expression
1 climaddf.1 kφ
2 climaddf.2 _kF
3 climaddf.3 _kG
4 climaddf.4 _kH
5 climaddf.5 Z=M
6 climaddf.6 φM
7 climaddf.7 φFA
8 climaddf.8 φHX
9 climaddf.9 φGB
10 climaddf.10 φkZFk
11 climaddf.11 φkZGk
12 climaddf.12 φkZHk=Fk+Gk
13 nfv kjZ
14 1 13 nfan kφjZ
15 nfcv _kj
16 2 15 nffv _kFj
17 16 nfel1 kFj
18 14 17 nfim kφjZFj
19 eleq1w k=jkZjZ
20 19 anbi2d k=jφkZφjZ
21 fveq2 k=jFk=Fj
22 21 eleq1d k=jFkFj
23 20 22 imbi12d k=jφkZFkφjZFj
24 18 23 10 chvarfv φjZFj
25 3 15 nffv _kGj
26 25 nfel1 kGj
27 14 26 nfim kφjZGj
28 fveq2 k=jGk=Gj
29 28 eleq1d k=jGkGj
30 20 29 imbi12d k=jφkZGkφjZGj
31 27 30 11 chvarfv φjZGj
32 4 15 nffv _kHj
33 nfcv _k+
34 16 33 25 nfov _kFj+Gj
35 32 34 nfeq kHj=Fj+Gj
36 14 35 nfim kφjZHj=Fj+Gj
37 fveq2 k=jHk=Hj
38 21 28 oveq12d k=jFk+Gk=Fj+Gj
39 37 38 eqeq12d k=jHk=Fk+GkHj=Fj+Gj
40 20 39 imbi12d k=jφkZHk=Fk+GkφjZHj=Fj+Gj
41 36 40 12 chvarfv φjZHj=Fj+Gj
42 5 6 7 8 9 24 31 41 climadd φHA+B