Metamath Proof Explorer


Theorem climmptf

Description: Exhibit a function G with the same convergence properties as the not-quite-function F . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climmptf.k _kF
climmptf.m φM
climmptf.f φFV
climmptf.z Z=M
climmptf.g G=kZFk
Assertion climmptf φFAGA

Proof

Step Hyp Ref Expression
1 climmptf.k _kF
2 climmptf.m φM
3 climmptf.f φFV
4 climmptf.z Z=M
5 climmptf.g G=kZFk
6 nfcv _jFk
7 nfcv _kj
8 1 7 nffv _kFj
9 fveq2 k=jFk=Fj
10 6 8 9 cbvmpt kZFk=jZFj
11 5 10 eqtri G=jZFj
12 4 11 climmpt MFVFAGA
13 2 3 12 syl2anc φFAGA