Metamath Proof Explorer


Theorem climresdm

Description: A real function converges iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses climresdm.1 φ M
climresdm.2 φ F V
Assertion climresdm φ F dom F M dom

Proof

Step Hyp Ref Expression
1 climresdm.1 φ M
2 climresdm.2 φ F V
3 resexg F dom F M V
4 3 adantl φ F dom F M V
5 fvexd φ F dom F V
6 climdm F dom F F
7 6 biimpi F dom F F
8 7 adantl φ F dom F F
9 1 adantr φ F dom M
10 simpr φ F dom F dom
11 9 10 climresd φ F dom F M F F F
12 8 11 mpbird φ F dom F M F
13 4 5 12 breldmd φ F dom F M dom
14 2 adantr φ F M dom F V
15 fvexd φ F M dom F M V
16 climdm F M dom F M F M
17 16 biimpi F M dom F M F M
18 17 adantl φ F M dom F M F M
19 1 adantr φ F M dom M
20 19 14 climresd φ F M dom F M F M F F M
21 18 20 mpbid φ F M dom F F M
22 14 15 21 breldmd φ F M dom F dom
23 13 22 impbida φ F dom F M dom