Metamath Proof Explorer


Theorem climub

Description: The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005) (Revised by Mario Carneiro, 10-Feb-2014)

Ref Expression
Hypotheses clim2ser.1 Z=M
climub.2 φNZ
climub.3 φFA
climub.4 φkZFk
climub.5 φkZFkFk+1
Assertion climub φFNA

Proof

Step Hyp Ref Expression
1 clim2ser.1 Z=M
2 climub.2 φNZ
3 climub.3 φFA
4 climub.4 φkZFk
5 climub.5 φkZFkFk+1
6 eqid N=N
7 2 1 eleqtrdi φNM
8 eluzelz NMN
9 7 8 syl φN
10 fveq2 k=NFk=FN
11 10 eleq1d k=NFkFN
12 11 imbi2d k=NφFkφFN
13 4 expcom kZφFk
14 12 13 vtoclga NZφFN
15 2 14 mpcom φFN
16 1 uztrn2 NZjNjZ
17 2 16 sylan φjNjZ
18 fveq2 k=jFk=Fj
19 18 eleq1d k=jFkFj
20 19 imbi2d k=jφFkφFj
21 20 13 vtoclga jZφFj
22 21 impcom φjZFj
23 17 22 syldan φjNFj
24 simpr φjNjN
25 elfzuz kNjkN
26 1 uztrn2 NZkNkZ
27 2 26 sylan φkNkZ
28 27 4 syldan φkNFk
29 25 28 sylan2 φkNjFk
30 29 adantlr φjNkNjFk
31 elfzuz kNj1kN
32 27 5 syldan φkNFkFk+1
33 31 32 sylan2 φkNj1FkFk+1
34 33 adantlr φjNkNj1FkFk+1
35 24 30 34 monoord φjNFNFj
36 6 9 15 3 23 35 climlec2 φFNA