Description: The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005) (Revised by Mario Carneiro, 10-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clim2ser.1 | |
|
climub.2 | |
||
climub.3 | |
||
climub.4 | |
||
climub.5 | |
||
Assertion | climub | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clim2ser.1 | |
|
2 | climub.2 | |
|
3 | climub.3 | |
|
4 | climub.4 | |
|
5 | climub.5 | |
|
6 | eqid | |
|
7 | 2 1 | eleqtrdi | |
8 | eluzelz | |
|
9 | 7 8 | syl | |
10 | fveq2 | |
|
11 | 10 | eleq1d | |
12 | 11 | imbi2d | |
13 | 4 | expcom | |
14 | 12 13 | vtoclga | |
15 | 2 14 | mpcom | |
16 | 1 | uztrn2 | |
17 | 2 16 | sylan | |
18 | fveq2 | |
|
19 | 18 | eleq1d | |
20 | 19 | imbi2d | |
21 | 20 13 | vtoclga | |
22 | 21 | impcom | |
23 | 17 22 | syldan | |
24 | simpr | |
|
25 | elfzuz | |
|
26 | 1 | uztrn2 | |
27 | 2 26 | sylan | |
28 | 27 4 | syldan | |
29 | 25 28 | sylan2 | |
30 | 29 | adantlr | |
31 | elfzuz | |
|
32 | 27 5 | syldan | |
33 | 31 32 | sylan2 | |
34 | 33 | adantlr | |
35 | 24 30 34 | monoord | |
36 | 6 9 15 3 23 35 | climlec2 | |