Metamath Proof Explorer


Theorem climub

Description: The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005) (Revised by Mario Carneiro, 10-Feb-2014)

Ref Expression
Hypotheses clim2ser.1 Z = M
climub.2 φ N Z
climub.3 φ F A
climub.4 φ k Z F k
climub.5 φ k Z F k F k + 1
Assertion climub φ F N A

Proof

Step Hyp Ref Expression
1 clim2ser.1 Z = M
2 climub.2 φ N Z
3 climub.3 φ F A
4 climub.4 φ k Z F k
5 climub.5 φ k Z F k F k + 1
6 eqid N = N
7 2 1 eleqtrdi φ N M
8 eluzelz N M N
9 7 8 syl φ N
10 fveq2 k = N F k = F N
11 10 eleq1d k = N F k F N
12 11 imbi2d k = N φ F k φ F N
13 4 expcom k Z φ F k
14 12 13 vtoclga N Z φ F N
15 2 14 mpcom φ F N
16 1 uztrn2 N Z j N j Z
17 2 16 sylan φ j N j Z
18 fveq2 k = j F k = F j
19 18 eleq1d k = j F k F j
20 19 imbi2d k = j φ F k φ F j
21 20 13 vtoclga j Z φ F j
22 21 impcom φ j Z F j
23 17 22 syldan φ j N F j
24 simpr φ j N j N
25 elfzuz k N j k N
26 1 uztrn2 N Z k N k Z
27 2 26 sylan φ k N k Z
28 27 4 syldan φ k N F k
29 25 28 sylan2 φ k N j F k
30 29 adantlr φ j N k N j F k
31 elfzuz k N j 1 k N
32 27 5 syldan φ k N F k F k + 1
33 31 32 sylan2 φ k N j 1 F k F k + 1
34 33 adantlr φ j N k N j 1 F k F k + 1
35 24 30 34 monoord φ j N F N F j
36 6 9 15 3 23 35 climlec2 φ F N A