Metamath Proof Explorer


Theorem climxlim

Description: A converging sequence in the reals is a converging sequence in the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses climxlim.m φM
climxlim.z Z=M
climxlim.f φF:Z
climxlim.c φFA
Assertion climxlim φF*A

Proof

Step Hyp Ref Expression
1 climxlim.m φM
2 climxlim.z Z=M
3 climxlim.f φF:Z
4 climxlim.c φFA
5 3 ffvelcdmda φkZFk
6 2 1 4 5 climrecl φA
7 1 2 3 6 xlimclim φF*AFA
8 4 7 mpbird φF*A