Metamath Proof Explorer


Theorem climxlim

Description: A converging sequence in the reals is a converging sequence in the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses climxlim.m φ M
climxlim.z Z = M
climxlim.f φ F : Z
climxlim.c φ F A
Assertion climxlim φ F * A

Proof

Step Hyp Ref Expression
1 climxlim.m φ M
2 climxlim.z Z = M
3 climxlim.f φ F : Z
4 climxlim.c φ F A
5 3 ffvelrnda φ k Z F k
6 2 1 4 5 climrecl φ A
7 1 2 3 6 xlimclim φ F * A F A
8 4 7 mpbird φ F * A