Metamath Proof Explorer


Theorem clmvs1

Description: Scalar product with ring unity. ( lmodvs1 analog.) (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clmvs1.v V=BaseW
clmvs1.s ·˙=W
Assertion clmvs1 WCModXV1·˙X=X

Proof

Step Hyp Ref Expression
1 clmvs1.v V=BaseW
2 clmvs1.s ·˙=W
3 eqid ScalarW=ScalarW
4 3 clm1 WCMod1=1ScalarW
5 4 adantr WCModXV1=1ScalarW
6 5 oveq1d WCModXV1·˙X=1ScalarW·˙X
7 clmlmod WCModWLMod
8 eqid 1ScalarW=1ScalarW
9 1 3 2 8 lmodvs1 WLModXV1ScalarW·˙X=X
10 7 9 sylan WCModXV1ScalarW·˙X=X
11 6 10 eqtrd WCModXV1·˙X=X