Description: When the property ps holds for a relation substituted for x , then the closure on that property is a relation if the base set is a relation. (Contributed by RP, 30-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clrellem.y | |
|
clrellem.rel | |
||
clrellem.sub | |
||
clrellem.sup | |
||
clrellem.maj | |
||
Assertion | clrellem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clrellem.y | |
|
2 | clrellem.rel | |
|
3 | clrellem.sub | |
|
4 | clrellem.sup | |
|
5 | clrellem.maj | |
|
6 | cnvexg | |
|
7 | cnvexg | |
|
8 | 1 6 7 | 3syl | |
9 | dfrel2 | |
|
10 | 2 9 | sylib | |
11 | cnvss | |
|
12 | cnvss | |
|
13 | 4 11 12 | 3syl | |
14 | 10 13 | eqsstrrd | |
15 | relcnv | |
|
16 | 15 | a1i | |
17 | 14 5 16 | jca31 | |
18 | 3 | cleq2lem | |
19 | releq | |
|
20 | 18 19 | anbi12d | |
21 | 8 17 20 | spcedv | |
22 | releq | |
|
23 | 22 | rexab2 | |
24 | 23 | biimpri | |
25 | relint | |
|
26 | 21 24 25 | 3syl | |