Metamath Proof Explorer


Theorem clrellem

Description: When the property ps holds for a relation substituted for x , then the closure on that property is a relation if the base set is a relation. (Contributed by RP, 30-Jul-2020)

Ref Expression
Hypotheses clrellem.y φYV
clrellem.rel φRelX
clrellem.sub x=Y-1-1ψχ
clrellem.sup φXY
clrellem.maj φχ
Assertion clrellem φRelx|Xxψ

Proof

Step Hyp Ref Expression
1 clrellem.y φYV
2 clrellem.rel φRelX
3 clrellem.sub x=Y-1-1ψχ
4 clrellem.sup φXY
5 clrellem.maj φχ
6 cnvexg YVY-1V
7 cnvexg Y-1VY-1-1V
8 1 6 7 3syl φY-1-1V
9 dfrel2 RelXX-1-1=X
10 2 9 sylib φX-1-1=X
11 cnvss XYX-1Y-1
12 cnvss X-1Y-1X-1-1Y-1-1
13 4 11 12 3syl φX-1-1Y-1-1
14 10 13 eqsstrrd φXY-1-1
15 relcnv RelY-1-1
16 15 a1i φRelY-1-1
17 14 5 16 jca31 φXY-1-1χRelY-1-1
18 3 cleq2lem x=Y-1-1XxψXY-1-1χ
19 releq x=Y-1-1RelxRelY-1-1
20 18 19 anbi12d x=Y-1-1XxψRelxXY-1-1χRelY-1-1
21 8 17 20 spcedv φxXxψRelx
22 releq y=xRelyRelx
23 22 rexab2 yx|XxψRelyxXxψRelx
24 23 biimpri xXxψRelxyx|XxψRely
25 relint yx|XxψRelyRelx|Xxψ
26 21 24 25 3syl φRelx|Xxψ