Metamath Proof Explorer


Theorem clsf

Description: The closure function is a function from subsets of the base to closed sets. (Contributed by Mario Carneiro, 11-Apr-2015)

Ref Expression
Hypothesis clscld.1 X=J
Assertion clsf JTopclsJ:𝒫XClsdJ

Proof

Step Hyp Ref Expression
1 clscld.1 X=J
2 elpwi x𝒫XxX
3 1 clsval JTopxXclsJx=yClsdJ|xy
4 fvex clsJxV
5 3 4 eqeltrrdi JTopxXyClsdJ|xyV
6 2 5 sylan2 JTopx𝒫XyClsdJ|xyV
7 1 clsfval JTopclsJ=x𝒫XyClsdJ|xy
8 elpwi y𝒫XyX
9 1 clscld JTopyXclsJyClsdJ
10 8 9 sylan2 JTopy𝒫XclsJyClsdJ
11 6 7 10 fmpt2d JTopclsJ:𝒫XClsdJ