Metamath Proof Explorer


Theorem clsneibex

Description: If (pseudo-)closure and (pseudo-)neighborhood functions are related by the composite operator, H , then the base set exists. (Contributed by RP, 4-Jun-2021)

Ref Expression
Hypotheses clsneibex.d D=PB
clsneibex.h H=FD
clsneibex.r φKHN
Assertion clsneibex φBV

Proof

Step Hyp Ref Expression
1 clsneibex.d D=PB
2 clsneibex.h H=FD
3 clsneibex.r φKHN
4 1 coeq2i FD=FPB
5 2 4 eqtri H=FPB
6 5 a1i φH=FPB
7 6 3 breqdi φKFPBN
8 brne0 KFPBNFPB
9 fvprc ¬BVPB=
10 9 rneqd ¬BVranPB=ran
11 rn0 ran=
12 10 11 eqtrdi ¬BVranPB=
13 12 ineq2d ¬BVdomFranPB=domF
14 in0 domF=
15 13 14 eqtrdi ¬BVdomFranPB=
16 15 coemptyd ¬BVFPB=
17 16 necon1ai FPBBV
18 7 8 17 3syl φBV