Metamath Proof Explorer


Theorem clsneifv4

Description: Value of the closure (interior) function in terms of the neighborhoods (convergents) function. (Contributed by RP, 27-Jun-2021)

Ref Expression
Hypotheses clsnei.o O = i V , j V k 𝒫 j i l j m i | l k m
clsnei.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
clsnei.d D = P B
clsnei.f F = 𝒫 B O B
clsnei.h H = F D
clsnei.r φ K H N
clsneifv.s φ S 𝒫 B
Assertion clsneifv4 φ K S = x B | ¬ B S N x

Proof

Step Hyp Ref Expression
1 clsnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 clsnei.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
3 clsnei.d D = P B
4 clsnei.f F = 𝒫 B O B
5 clsnei.h H = F D
6 clsnei.r φ K H N
7 clsneifv.s φ S 𝒫 B
8 dfin5 B K S = x B | x K S
9 1 2 3 4 5 6 clsneikex φ K 𝒫 B 𝒫 B
10 elmapi K 𝒫 B 𝒫 B K : 𝒫 B 𝒫 B
11 9 10 syl φ K : 𝒫 B 𝒫 B
12 11 7 ffvelrnd φ K S 𝒫 B
13 12 elpwid φ K S B
14 sseqin2 K S B B K S = K S
15 13 14 sylib φ B K S = K S
16 6 adantr φ x B K H N
17 simpr φ x B x B
18 7 adantr φ x B S 𝒫 B
19 1 2 3 4 5 16 17 18 clsneiel1 φ x B x K S ¬ B S N x
20 19 rabbidva φ x B | x K S = x B | ¬ B S N x
21 8 15 20 3eqtr3a φ K S = x B | ¬ B S N x