Metamath Proof Explorer


Theorem clwwlknwwlkncl

Description: Obtaining a closed walk (as word) by appending the first symbol to the word representing a walk. (Contributed by Alexander van der Vekens, 29-Sep-2018) (Revised by AV, 26-Apr-2021) (Revised by AV, 22-Mar-2022)

Ref Expression
Assertion clwwlknwwlkncl WNClWWalksNGW++⟨“W0”⟩wNWWalksNG|lastSw=w0

Proof

Step Hyp Ref Expression
1 clwwlknnn WNClWWalksNGN
2 eqid VtxG=VtxG
3 2 clwwlknbp WNClWWalksNGWWordVtxGW=N
4 eqid EdgG=EdgG
5 2 4 clwwlknp WNClWWalksNGWWordVtxGW=Ni0..^N1WiWi+1EdgGlastSWW0EdgG
6 3simpc WWordVtxGW=Ni0..^N1WiWi+1EdgGlastSWW0EdgGi0..^N1WiWi+1EdgGlastSWW0EdgG
7 5 6 syl WNClWWalksNGi0..^N1WiWi+1EdgGlastSWW0EdgG
8 eqid wNWWalksNG|lastSw=w0=wNWWalksNG|lastSw=w0
9 8 clwwlkel NWWordVtxGW=Ni0..^N1WiWi+1EdgGlastSWW0EdgGW++⟨“W0”⟩wNWWalksNG|lastSw=w0
10 1 3 7 9 syl3anc WNClWWalksNGW++⟨“W0”⟩wNWWalksNG|lastSw=w0