Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlkwwlksb.v |
|
2 |
|
fstwrdne |
|
3 |
2
|
s1cld |
|
4 |
|
ccatlen |
|
5 |
3 4
|
syldan |
|
6 |
|
s1len |
|
7 |
6
|
oveq2i |
|
8 |
5 7
|
eqtrdi |
|
9 |
8
|
oveq1d |
|
10 |
|
lencl |
|
11 |
10
|
nn0cnd |
|
12 |
11
|
adantr |
|
13 |
|
1cnd |
|
14 |
12 13 13
|
addsubd |
|
15 |
9 14
|
eqtrd |
|
16 |
15
|
oveq2d |
|
17 |
16
|
raleqdv |
|
18 |
|
lennncl |
|
19 |
|
nnm1nn0 |
|
20 |
18 19
|
syl |
|
21 |
|
elnn0uz |
|
22 |
20 21
|
sylib |
|
23 |
|
fzosplitsn |
|
24 |
22 23
|
syl |
|
25 |
24
|
raleqdv |
|
26 |
|
ralunb |
|
27 |
25 26
|
bitrdi |
|
28 |
|
simpl |
|
29 |
10
|
nn0zd |
|
30 |
29
|
adantr |
|
31 |
|
elfzom1elfzo |
|
32 |
30 31
|
sylan |
|
33 |
|
ccats1val1 |
|
34 |
28 32 33
|
syl2an2r |
|
35 |
|
elfzom1elp1fzo |
|
36 |
30 35
|
sylan |
|
37 |
|
ccats1val1 |
|
38 |
28 36 37
|
syl2an2r |
|
39 |
34 38
|
preq12d |
|
40 |
39
|
eleq1d |
|
41 |
40
|
ralbidva |
|
42 |
|
ovex |
|
43 |
|
fveq2 |
|
44 |
|
fvoveq1 |
|
45 |
43 44
|
preq12d |
|
46 |
45
|
eleq1d |
|
47 |
42 46
|
ralsn |
|
48 |
|
fzo0end |
|
49 |
18 48
|
syl |
|
50 |
|
ccats1val1 |
|
51 |
49 50
|
syldan |
|
52 |
|
lsw |
|
53 |
52
|
adantr |
|
54 |
51 53
|
eqtr4d |
|
55 |
|
npcan1 |
|
56 |
11 55
|
syl |
|
57 |
56
|
adantr |
|
58 |
57
|
fveq2d |
|
59 |
|
eqidd |
|
60 |
|
ccats1val2 |
|
61 |
28 2 59 60
|
syl3anc |
|
62 |
58 61
|
eqtrd |
|
63 |
54 62
|
preq12d |
|
64 |
63
|
eleq1d |
|
65 |
47 64
|
syl5bb |
|
66 |
41 65
|
anbi12d |
|
67 |
17 27 66
|
3bitrd |
|
68 |
28 3
|
jca |
|
69 |
|
ccat0 |
|
70 |
|
simpl |
|
71 |
69 70
|
syl6bi |
|
72 |
71
|
necon3d |
|
73 |
72
|
adantld |
|
74 |
68 73
|
mpcom |
|
75 |
|
wrdv |
|
76 |
|
s1cli |
|
77 |
|
ccatalpha |
|
78 |
75 76 77
|
sylancl |
|
79 |
78
|
adantr |
|
80 |
28 3 79
|
mpbir2and |
|
81 |
74 80
|
jca |
|
82 |
|
eqid |
|
83 |
1 82
|
iswwlks |
|
84 |
|
df-3an |
|
85 |
83 84
|
bitri |
|
86 |
85
|
a1i |
|
87 |
81 86
|
mpbirand |
|
88 |
1 82
|
isclwwlk |
|
89 |
|
3anass |
|
90 |
88 89
|
bitri |
|
91 |
90
|
baib |
|
92 |
67 87 91
|
3bitr4rd |
|