Metamath Proof Explorer


Theorem cmetcau

Description: The convergence of a Cauchy sequence in a complete metric space. (Contributed by NM, 19-Dec-2006) (Revised by Mario Carneiro, 14-Oct-2015)

Ref Expression
Hypothesis cmetcau.1 J=MetOpenD
Assertion cmetcau DCMetXFCauDFdomtJ

Proof

Step Hyp Ref Expression
1 cmetcau.1 J=MetOpenD
2 cmetmet DCMetXDMetX
3 metxmet DMetXD∞MetX
4 2 3 syl DCMetXD∞MetX
5 caun0 D∞MetXFCauDX
6 4 5 sylan DCMetXFCauDX
7 n0 XxxX
8 6 7 sylib DCMetXFCauDxxX
9 simpll DCMetXFCauDxXDCMetX
10 simpr DCMetXFCauDxXxX
11 simplr DCMetXFCauDxXFCauD
12 eqid yifydomFFyx=yifydomFFyx
13 1 9 10 11 12 cmetcaulem DCMetXFCauDxXFdomtJ
14 8 13 exlimddv DCMetXFCauDFdomtJ