Metamath Proof Explorer


Theorem cmslssbn

Description: A complete linear subspace of a normed vector space is a Banach space. We furthermore have to assume that the field of scalars is complete since this is a requirement in the current definition of Banach spaces df-bn . (Contributed by AV, 8-Oct-2022)

Ref Expression
Hypotheses cmslssbn.x X = W 𝑠 U
cmslssbn.s S = LSubSp W
Assertion cmslssbn W NrmVec Scalar W CMetSp X CMetSp U S X Ban

Proof

Step Hyp Ref Expression
1 cmslssbn.x X = W 𝑠 U
2 cmslssbn.s S = LSubSp W
3 1 2 lssnvc W NrmVec U S X NrmVec
4 3 ad2ant2rl W NrmVec Scalar W CMetSp X CMetSp U S X NrmVec
5 simprl W NrmVec Scalar W CMetSp X CMetSp U S X CMetSp
6 eqid Scalar W = Scalar W
7 1 6 resssca U S Scalar W = Scalar X
8 7 ad2antll W NrmVec X CMetSp U S Scalar W = Scalar X
9 8 eleq1d W NrmVec X CMetSp U S Scalar W CMetSp Scalar X CMetSp
10 9 biimpd W NrmVec X CMetSp U S Scalar W CMetSp Scalar X CMetSp
11 10 impancom W NrmVec Scalar W CMetSp X CMetSp U S Scalar X CMetSp
12 11 imp W NrmVec Scalar W CMetSp X CMetSp U S Scalar X CMetSp
13 eqid Scalar X = Scalar X
14 13 isbn X Ban X NrmVec X CMetSp Scalar X CMetSp
15 4 5 12 14 syl3anbrc W NrmVec Scalar W CMetSp X CMetSp U S X Ban