Metamath Proof Explorer


Theorem cmtvalN

Description: Equivalence for commutes relation. Definition of commutes in Kalmbach p. 20. ( cmbr analog.) (Contributed by NM, 6-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cmtfval.b B=BaseK
cmtfval.j ˙=joinK
cmtfval.m ˙=meetK
cmtfval.o ˙=ocK
cmtfval.c C=cmK
Assertion cmtvalN KAXBYBXCYX=X˙Y˙X˙˙Y

Proof

Step Hyp Ref Expression
1 cmtfval.b B=BaseK
2 cmtfval.j ˙=joinK
3 cmtfval.m ˙=meetK
4 cmtfval.o ˙=ocK
5 cmtfval.c C=cmK
6 1 2 3 4 5 cmtfvalN KAC=xy|xByBx=x˙y˙x˙˙y
7 df-3an xByBx=x˙y˙x˙˙yxByBx=x˙y˙x˙˙y
8 7 opabbii xy|xByBx=x˙y˙x˙˙y=xy|xByBx=x˙y˙x˙˙y
9 6 8 eqtrdi KAC=xy|xByBx=x˙y˙x˙˙y
10 9 breqd KAXCYXxy|xByBx=x˙y˙x˙˙yY
11 10 3ad2ant1 KAXBYBXCYXxy|xByBx=x˙y˙x˙˙yY
12 df-br Xxy|xByBx=x˙y˙x˙˙yYXYxy|xByBx=x˙y˙x˙˙y
13 id x=Xx=X
14 oveq1 x=Xx˙y=X˙y
15 oveq1 x=Xx˙˙y=X˙˙y
16 14 15 oveq12d x=Xx˙y˙x˙˙y=X˙y˙X˙˙y
17 13 16 eqeq12d x=Xx=x˙y˙x˙˙yX=X˙y˙X˙˙y
18 oveq2 y=YX˙y=X˙Y
19 fveq2 y=Y˙y=˙Y
20 19 oveq2d y=YX˙˙y=X˙˙Y
21 18 20 oveq12d y=YX˙y˙X˙˙y=X˙Y˙X˙˙Y
22 21 eqeq2d y=YX=X˙y˙X˙˙yX=X˙Y˙X˙˙Y
23 17 22 opelopab2 XBYBXYxy|xByBx=x˙y˙x˙˙yX=X˙Y˙X˙˙Y
24 12 23 bitrid XBYBXxy|xByBx=x˙y˙x˙˙yYX=X˙Y˙X˙˙Y
25 24 3adant1 KAXBYBXxy|xByBx=x˙y˙x˙˙yYX=X˙Y˙X˙˙Y
26 11 25 bitrd KAXBYBXCYX=X˙Y˙X˙˙Y