Metamath Proof Explorer


Theorem cnbn

Description: The set of complex numbers is a complex Banach space. (Contributed by Steve Rodriguez, 4-Jan-2007) (New usage is discouraged.)

Ref Expression
Hypothesis cnbn.6 U=+×abs
Assertion cnbn UCBan

Proof

Step Hyp Ref Expression
1 cnbn.6 U=+×abs
2 1 cnnv UNrmCVec
3 eqid +×abs=+×abs
4 eqid abs=abs
5 3 4 cnims abs=IndMet+×abs
6 5 eqcomi IndMet+×abs=abs
7 6 cncmet IndMet+×absCMet
8 1 cnnvba =BaseSetU
9 1 fveq2i IndMetU=IndMet+×abs
10 9 eqcomi IndMet+×abs=IndMetU
11 8 10 iscbn UCBanUNrmCVecIndMet+×absCMet
12 2 7 11 mpbir2an UCBan