Metamath Proof Explorer


Theorem cncfmpt2f

Description: Composition of continuous functions. -cn-> analogue of cnmpt12f . (Contributed by Mario Carneiro, 3-Sep-2014)

Ref Expression
Hypotheses cncfmpt2f.1 J=TopOpenfld
cncfmpt2f.2 φFJ×tJCnJ
cncfmpt2f.3 φxXA:Xcn
cncfmpt2f.4 φxXB:Xcn
Assertion cncfmpt2f φxXAFB:Xcn

Proof

Step Hyp Ref Expression
1 cncfmpt2f.1 J=TopOpenfld
2 cncfmpt2f.2 φFJ×tJCnJ
3 cncfmpt2f.3 φxXA:Xcn
4 cncfmpt2f.4 φxXB:Xcn
5 1 cnfldtopon JTopOn
6 cncfrss xXA:XcnX
7 3 6 syl φX
8 resttopon JTopOnXJ𝑡XTopOnX
9 5 7 8 sylancr φJ𝑡XTopOnX
10 ssid
11 eqid J𝑡X=J𝑡X
12 5 toponrestid J=J𝑡
13 1 11 12 cncfcn XXcn=J𝑡XCnJ
14 7 10 13 sylancl φXcn=J𝑡XCnJ
15 3 14 eleqtrd φxXAJ𝑡XCnJ
16 4 14 eleqtrd φxXBJ𝑡XCnJ
17 9 15 16 2 cnmpt12f φxXAFBJ𝑡XCnJ
18 17 14 eleqtrrd φxXAFB:Xcn