Metamath Proof Explorer


Theorem cnextrel

Description: In the general case, a continuous extension is a relation. (Contributed by Thierry Arnoux, 20-Dec-2017)

Ref Expression
Hypotheses cnextfrel.1 C=J
cnextfrel.2 B=K
Assertion cnextrel JTopKTopF:ABACRelJCnExtKF

Proof

Step Hyp Ref Expression
1 cnextfrel.1 C=J
2 cnextfrel.2 B=K
3 relxp Relx×KfLimfneiJx𝑡AF
4 3 rgenw xclsJARelx×KfLimfneiJx𝑡AF
5 reliun RelxclsJAx×KfLimfneiJx𝑡AFxclsJARelx×KfLimfneiJx𝑡AF
6 4 5 mpbir RelxclsJAx×KfLimfneiJx𝑡AF
7 1 2 cnextfval JTopKTopF:ABACJCnExtKF=xclsJAx×KfLimfneiJx𝑡AF
8 7 releqd JTopKTopF:ABACRelJCnExtKFRelxclsJAx×KfLimfneiJx𝑡AF
9 6 8 mpbiri JTopKTopF:ABACRelJCnExtKF