Metamath Proof Explorer


Theorem cnfldinv

Description: The multiplicative inverse in the field of complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Assertion cnfldinv XX0invrfldX=1X

Proof

Step Hyp Ref Expression
1 eldifsn X0XX0
2 cnring fldRing
3 cnfldbas =Basefld
4 cnfld0 0=0fld
5 cndrng fldDivRing
6 3 4 5 drngui 0=Unitfld
7 cnflddiv ÷=/rfld
8 cnfld1 1=1fld
9 eqid invrfld=invrfld
10 3 6 7 8 9 ringinvdv fldRingX0invrfldX=1X
11 2 10 mpan X0invrfldX=1X
12 1 11 sylbir XX0invrfldX=1X