Metamath Proof Explorer


Theorem cnnei

Description: Continuity in terms of neighborhoods. (Contributed by Thierry Arnoux, 3-Jan-2018)

Ref Expression
Hypotheses cnnei.x X=J
cnnei.y Y=K
Assertion cnnei JTopKTopF:XYFJCnKpXwneiKFpvneiJpFvw

Proof

Step Hyp Ref Expression
1 cnnei.x X=J
2 cnnei.y Y=K
3 1 toptopon JTopJTopOnX
4 2 toptopon KTopKTopOnY
5 3 4 anbi12i JTopKTopJTopOnXKTopOnY
6 cncnp JTopOnXKTopOnYFJCnKF:XYpXFJCnPKp
7 6 baibd JTopOnXKTopOnYF:XYFJCnKpXFJCnPKp
8 5 7 sylanb JTopKTopF:XYFJCnKpXFJCnPKp
9 5 anbi1i JTopKTopF:XYJTopOnXKTopOnYF:XY
10 iscnp4 JTopOnXKTopOnYpXFJCnPKpF:XYwneiKFpvneiJpFvw
11 10 3expa JTopOnXKTopOnYpXFJCnPKpF:XYwneiKFpvneiJpFvw
12 11 baibd JTopOnXKTopOnYpXF:XYFJCnPKpwneiKFpvneiJpFvw
13 12 an32s JTopOnXKTopOnYF:XYpXFJCnPKpwneiKFpvneiJpFvw
14 9 13 sylanb JTopKTopF:XYpXFJCnPKpwneiKFpvneiJpFvw
15 14 ralbidva JTopKTopF:XYpXFJCnPKppXwneiKFpvneiJpFvw
16 8 15 bitrd JTopKTopF:XYFJCnKpXwneiKFpvneiJpFvw
17 16 3impa JTopKTopF:XYFJCnKpXwneiKFpvneiJpFvw