Metamath Proof Explorer


Theorem cnres2

Description: The restriction of a continuous function to a subset is continuous. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 15-Dec-2013)

Ref Expression
Hypotheses cnres2.1 X = J
cnres2.2 Y = K
Assertion cnres2 J Top K Top A X B Y F J Cn K x A F x B F A J 𝑡 A Cn K 𝑡 B

Proof

Step Hyp Ref Expression
1 cnres2.1 X = J
2 cnres2.2 Y = K
3 simp3l J Top K Top A X B Y F J Cn K x A F x B F J Cn K
4 simp2l J Top K Top A X B Y F J Cn K x A F x B A X
5 1 cnrest F J Cn K A X F A J 𝑡 A Cn K
6 3 4 5 syl2anc J Top K Top A X B Y F J Cn K x A F x B F A J 𝑡 A Cn K
7 simp1r J Top K Top A X B Y F J Cn K x A F x B K Top
8 2 toptopon K Top K TopOn Y
9 7 8 sylib J Top K Top A X B Y F J Cn K x A F x B K TopOn Y
10 df-ima F A = ran F A
11 simp3r J Top K Top A X B Y F J Cn K x A F x B x A F x B
12 1 2 cnf F J Cn K F : X Y
13 ffun F : X Y Fun F
14 3 12 13 3syl J Top K Top A X B Y F J Cn K x A F x B Fun F
15 fdm F : X Y dom F = X
16 3 12 15 3syl J Top K Top A X B Y F J Cn K x A F x B dom F = X
17 4 16 sseqtrrd J Top K Top A X B Y F J Cn K x A F x B A dom F
18 funimass4 Fun F A dom F F A B x A F x B
19 14 17 18 syl2anc J Top K Top A X B Y F J Cn K x A F x B F A B x A F x B
20 11 19 mpbird J Top K Top A X B Y F J Cn K x A F x B F A B
21 10 20 eqsstrrid J Top K Top A X B Y F J Cn K x A F x B ran F A B
22 simp2r J Top K Top A X B Y F J Cn K x A F x B B Y
23 cnrest2 K TopOn Y ran F A B B Y F A J 𝑡 A Cn K F A J 𝑡 A Cn K 𝑡 B
24 9 21 22 23 syl3anc J Top K Top A X B Y F J Cn K x A F x B F A J 𝑡 A Cn K F A J 𝑡 A Cn K 𝑡 B
25 6 24 mpbid J Top K Top A X B Y F J Cn K x A F x B F A J 𝑡 A Cn K 𝑡 B