Step |
Hyp |
Ref |
Expression |
1 |
|
cnres2.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
cnres2.2 |
⊢ 𝑌 = ∪ 𝐾 |
3 |
|
simp3l |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
4 |
|
simp2l |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) → 𝐴 ⊆ 𝑋 ) |
5 |
1
|
cnrest |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) |
6 |
3 4 5
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) |
7 |
|
simp1r |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) → 𝐾 ∈ Top ) |
8 |
2
|
toptopon |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
9 |
7 8
|
sylib |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
10 |
|
df-ima |
⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) |
11 |
|
simp3r |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
12 |
1 2
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
13 |
|
ffun |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → Fun 𝐹 ) |
14 |
3 12 13
|
3syl |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) → Fun 𝐹 ) |
15 |
|
fdm |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → dom 𝐹 = 𝑋 ) |
16 |
3 12 15
|
3syl |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) → dom 𝐹 = 𝑋 ) |
17 |
4 16
|
sseqtrrd |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) → 𝐴 ⊆ dom 𝐹 ) |
18 |
|
funimass4 |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
19 |
14 17 18
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) → ( ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
20 |
11 19
|
mpbird |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) → ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ) |
21 |
10 20
|
eqsstrrid |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) → ran ( 𝐹 ↾ 𝐴 ) ⊆ 𝐵 ) |
22 |
|
simp2r |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) → 𝐵 ⊆ 𝑌 ) |
23 |
|
cnrest2 |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran ( 𝐹 ↾ 𝐴 ) ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ↔ ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn ( 𝐾 ↾t 𝐵 ) ) ) ) |
24 |
9 21 22 23
|
syl3anc |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ↔ ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn ( 𝐾 ↾t 𝐵 ) ) ) ) |
25 |
6 24
|
mpbid |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn ( 𝐾 ↾t 𝐵 ) ) ) |