Metamath Proof Explorer


Theorem cntzfval

Description: First level substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses cntzfval.b B=BaseM
cntzfval.p +˙=+M
cntzfval.z Z=CntzM
Assertion cntzfval MVZ=s𝒫BxB|ysx+˙y=y+˙x

Proof

Step Hyp Ref Expression
1 cntzfval.b B=BaseM
2 cntzfval.p +˙=+M
3 cntzfval.z Z=CntzM
4 elex MVMV
5 fveq2 m=MBasem=BaseM
6 5 1 eqtr4di m=MBasem=B
7 6 pweqd m=M𝒫Basem=𝒫B
8 fveq2 m=M+m=+M
9 8 2 eqtr4di m=M+m=+˙
10 9 oveqd m=Mx+my=x+˙y
11 9 oveqd m=My+mx=y+˙x
12 10 11 eqeq12d m=Mx+my=y+mxx+˙y=y+˙x
13 12 ralbidv m=Mysx+my=y+mxysx+˙y=y+˙x
14 6 13 rabeqbidv m=MxBasem|ysx+my=y+mx=xB|ysx+˙y=y+˙x
15 7 14 mpteq12dv m=Ms𝒫BasemxBasem|ysx+my=y+mx=s𝒫BxB|ysx+˙y=y+˙x
16 df-cntz Cntz=mVs𝒫BasemxBasem|ysx+my=y+mx
17 1 fvexi BV
18 17 pwex 𝒫BV
19 18 mptex s𝒫BxB|ysx+˙y=y+˙xV
20 15 16 19 fvmpt MVCntzM=s𝒫BxB|ysx+˙y=y+˙x
21 4 20 syl MVCntzM=s𝒫BxB|ysx+˙y=y+˙x
22 3 21 eqtrid MVZ=s𝒫BxB|ysx+˙y=y+˙x