Metamath Proof Explorer


Theorem cnvct

Description: If a set is countable, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016)

Ref Expression
Assertion cnvct AωA-1ω

Proof

Step Hyp Ref Expression
1 relcnv RelA-1
2 ctex AωAV
3 cnvexg AVA-1V
4 2 3 syl AωA-1V
5 cnven RelA-1A-1VA-1A-1-1
6 1 4 5 sylancr AωA-1A-1-1
7 cnvcnvss A-1-1A
8 ssdomg AVA-1-1AA-1-1A
9 2 7 8 mpisyl AωA-1-1A
10 endomtr A-1A-1-1A-1-1AA-1A
11 6 9 10 syl2anc AωA-1A
12 domtr A-1AAωA-1ω
13 11 12 mpancom AωA-1ω