Description: If a set is countable, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | cnvct | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv | |
|
2 | ctex | |
|
3 | cnvexg | |
|
4 | 2 3 | syl | |
5 | cnven | |
|
6 | 1 4 5 | sylancr | |
7 | cnvcnvss | |
|
8 | ssdomg | |
|
9 | 2 7 8 | mpisyl | |
10 | endomtr | |
|
11 | 6 9 10 | syl2anc | |
12 | domtr | |
|
13 | 11 12 | mpancom | |