Metamath Proof Explorer


Theorem cnvct

Description: If a set is countable, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016)

Ref Expression
Assertion cnvct A ω A -1 ω

Proof

Step Hyp Ref Expression
1 relcnv Rel A -1
2 ctex A ω A V
3 cnvexg A V A -1 V
4 2 3 syl A ω A -1 V
5 cnven Rel A -1 A -1 V A -1 A -1 -1
6 1 4 5 sylancr A ω A -1 A -1 -1
7 cnvcnvss A -1 -1 A
8 ssdomg A V A -1 -1 A A -1 -1 A
9 2 7 8 mpisyl A ω A -1 -1 A
10 endomtr A -1 A -1 -1 A -1 -1 A A -1 A
11 6 9 10 syl2anc A ω A -1 A
12 domtr A -1 A A ω A -1 ω
13 11 12 mpancom A ω A -1 ω