| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relcnv |
|- Rel `' A |
| 2 |
|
ctex |
|- ( A ~<_ _om -> A e. _V ) |
| 3 |
|
cnvexg |
|- ( A e. _V -> `' A e. _V ) |
| 4 |
2 3
|
syl |
|- ( A ~<_ _om -> `' A e. _V ) |
| 5 |
|
cnven |
|- ( ( Rel `' A /\ `' A e. _V ) -> `' A ~~ `' `' A ) |
| 6 |
1 4 5
|
sylancr |
|- ( A ~<_ _om -> `' A ~~ `' `' A ) |
| 7 |
|
cnvcnvss |
|- `' `' A C_ A |
| 8 |
|
ssdomg |
|- ( A e. _V -> ( `' `' A C_ A -> `' `' A ~<_ A ) ) |
| 9 |
2 7 8
|
mpisyl |
|- ( A ~<_ _om -> `' `' A ~<_ A ) |
| 10 |
|
endomtr |
|- ( ( `' A ~~ `' `' A /\ `' `' A ~<_ A ) -> `' A ~<_ A ) |
| 11 |
6 9 10
|
syl2anc |
|- ( A ~<_ _om -> `' A ~<_ A ) |
| 12 |
|
domtr |
|- ( ( `' A ~<_ A /\ A ~<_ _om ) -> `' A ~<_ _om ) |
| 13 |
11 12
|
mpancom |
|- ( A ~<_ _om -> `' A ~<_ _om ) |