Metamath Proof Explorer


Theorem cnven

Description: A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Assertion cnven RelAAVAA-1

Proof

Step Hyp Ref Expression
1 simpr RelAAVAV
2 cnvexg AVA-1V
3 2 adantl RelAAVA-1V
4 cnvf1o RelAxAx-1:A1-1 ontoA-1
5 4 adantr RelAAVxAx-1:A1-1 ontoA-1
6 f1oen2g AVA-1VxAx-1:A1-1 ontoA-1AA-1
7 1 3 5 6 syl3anc RelAAVAA-1