Metamath Proof Explorer


Theorem cnvtrcl0

Description: The converse of the transitive closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020)

Ref Expression
Assertion cnvtrcl0 X V x | X x x x x -1 = y | X -1 y y y y

Proof

Step Hyp Ref Expression
1 cnvco y y -1 = y -1 y -1
2 cnvss y y y y y -1 y -1
3 1 2 eqsstrrid y y y y -1 y -1 y -1
4 coundir y -1 X X -1 -1 y -1 X X -1 -1 = y -1 y -1 X X -1 -1 X X -1 -1 y -1 X X -1 -1
5 coundi y -1 y -1 X X -1 -1 = y -1 y -1 y -1 X X -1 -1
6 ssid y -1 y -1 y -1 y -1
7 cononrel2 y -1 X X -1 -1 =
8 0ss y -1 y -1
9 7 8 eqsstri y -1 X X -1 -1 y -1 y -1
10 6 9 unssi y -1 y -1 y -1 X X -1 -1 y -1 y -1
11 5 10 eqsstri y -1 y -1 X X -1 -1 y -1 y -1
12 cononrel1 X X -1 -1 y -1 X X -1 -1 =
13 12 8 eqsstri X X -1 -1 y -1 X X -1 -1 y -1 y -1
14 11 13 unssi y -1 y -1 X X -1 -1 X X -1 -1 y -1 X X -1 -1 y -1 y -1
15 4 14 eqsstri y -1 X X -1 -1 y -1 X X -1 -1 y -1 y -1
16 id y -1 y -1 y -1 y -1 y -1 y -1
17 15 16 sstrid y -1 y -1 y -1 y -1 X X -1 -1 y -1 X X -1 -1 y -1
18 ssun3 y -1 X X -1 -1 y -1 X X -1 -1 y -1 y -1 X X -1 -1 y -1 X X -1 -1 y -1 X X -1 -1
19 3 17 18 3syl y y y y -1 X X -1 -1 y -1 X X -1 -1 y -1 X X -1 -1
20 id x = y -1 X X -1 -1 x = y -1 X X -1 -1
21 20 20 coeq12d x = y -1 X X -1 -1 x x = y -1 X X -1 -1 y -1 X X -1 -1
22 21 20 sseq12d x = y -1 X X -1 -1 x x x y -1 X X -1 -1 y -1 X X -1 -1 y -1 X X -1 -1
23 19 22 syl5ibr x = y -1 X X -1 -1 y y y x x x
24 23 adantl X V x = y -1 X X -1 -1 y y y x x x
25 cnvco x x -1 = x -1 x -1
26 cnvss x x x x x -1 x -1
27 25 26 eqsstrrid x x x x -1 x -1 x -1
28 id y = x -1 y = x -1
29 28 28 coeq12d y = x -1 y y = x -1 x -1
30 29 28 sseq12d y = x -1 y y y x -1 x -1 x -1
31 27 30 syl5ibr y = x -1 x x x y y y
32 31 adantl X V y = x -1 x x x y y y
33 id x = X dom X × ran X x = X dom X × ran X
34 33 33 coeq12d x = X dom X × ran X x x = X dom X × ran X X dom X × ran X
35 34 33 sseq12d x = X dom X × ran X x x x X dom X × ran X X dom X × ran X X dom X × ran X
36 ssun1 X X dom X × ran X
37 36 a1i X V X X dom X × ran X
38 trclexlem X V X dom X × ran X V
39 coundir X dom X × ran X X dom X × ran X = X X dom X × ran X dom X × ran X X dom X × ran X
40 coundi X X dom X × ran X = X X X dom X × ran X
41 cossxp X X dom X × ran X
42 cossxp X dom X × ran X dom dom X × ran X × ran X
43 dmxpss dom dom X × ran X dom X
44 xpss1 dom dom X × ran X dom X dom dom X × ran X × ran X dom X × ran X
45 43 44 ax-mp dom dom X × ran X × ran X dom X × ran X
46 42 45 sstri X dom X × ran X dom X × ran X
47 41 46 unssi X X X dom X × ran X dom X × ran X
48 40 47 eqsstri X X dom X × ran X dom X × ran X
49 coundi dom X × ran X X dom X × ran X = dom X × ran X X dom X × ran X dom X × ran X
50 cossxp dom X × ran X X dom X × ran dom X × ran X
51 rnxpss ran dom X × ran X ran X
52 xpss2 ran dom X × ran X ran X dom X × ran dom X × ran X dom X × ran X
53 51 52 ax-mp dom X × ran dom X × ran X dom X × ran X
54 50 53 sstri dom X × ran X X dom X × ran X
55 xptrrel dom X × ran X dom X × ran X dom X × ran X
56 54 55 unssi dom X × ran X X dom X × ran X dom X × ran X dom X × ran X
57 49 56 eqsstri dom X × ran X X dom X × ran X dom X × ran X
58 48 57 unssi X X dom X × ran X dom X × ran X X dom X × ran X dom X × ran X
59 39 58 eqsstri X dom X × ran X X dom X × ran X dom X × ran X
60 ssun2 dom X × ran X X dom X × ran X
61 59 60 sstri X dom X × ran X X dom X × ran X X dom X × ran X
62 61 a1i X V X dom X × ran X X dom X × ran X X dom X × ran X
63 24 32 35 37 38 62 clcnvlem X V x | X x x x x -1 = y | X -1 y y y y