Metamath Proof Explorer


Theorem coe1fsupp

Description: The coefficient vector of a univariate polynomial is a finitely supported mapping from the nonnegative integers to the elements of the coefficient class/ring for the polynomial. (Contributed by AV, 3-Oct-2019)

Ref Expression
Hypotheses coe1sfi.a A=coe1F
coe1sfi.b B=BaseP
coe1sfi.p P=Poly1R
coe1sfi.z 0˙=0R
coe1fvalcl.k K=BaseR
Assertion coe1fsupp FBAgK0|finSupp0˙g

Proof

Step Hyp Ref Expression
1 coe1sfi.a A=coe1F
2 coe1sfi.b B=BaseP
3 coe1sfi.p P=Poly1R
4 coe1sfi.z 0˙=0R
5 coe1fvalcl.k K=BaseR
6 breq1 g=AfinSupp0˙gfinSupp0˙A
7 1 2 3 5 coe1f FBA:0K
8 5 fvexi KV
9 nn0ex 0V
10 8 9 pm3.2i KV0V
11 elmapg KV0VAK0A:0K
12 10 11 mp1i FBAK0A:0K
13 7 12 mpbird FBAK0
14 1 2 3 4 coe1sfi FBfinSupp0˙A
15 6 13 14 elrabd FBAgK0|finSupp0˙g