Metamath Proof Explorer


Theorem coeid2

Description: Reconstruct a polynomial as an explicit sum of the coefficient function up to the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypotheses dgrub.1 A=coeffF
dgrub.2 N=degF
Assertion coeid2 FPolySXFX=k=0NAkXk

Proof

Step Hyp Ref Expression
1 dgrub.1 A=coeffF
2 dgrub.2 N=degF
3 1 2 coeid FPolySF=zk=0NAkzk
4 3 fveq1d FPolySFX=zk=0NAkzkX
5 oveq1 z=Xzk=Xk
6 5 oveq2d z=XAkzk=AkXk
7 6 sumeq2sdv z=Xk=0NAkzk=k=0NAkXk
8 eqid zk=0NAkzk=zk=0NAkzk
9 sumex k=0NAkXkV
10 7 8 9 fvmpt Xzk=0NAkzkX=k=0NAkXk
11 4 10 sylan9eq FPolySXFX=k=0NAkXk