Metamath Proof Explorer


Theorem cofidf1

Description: If " <. F , G >. is a section of <. K , L >. " in a category of small categories (in a universe), then F is injective, and K is surjective. (Contributed by Zhi Wang, 15-Nov-2025)

Ref Expression
Hypotheses cofidval.i I = id func D
cofidval.b B = Base D
cofidval.f φ F D Func E G
cofidval.k φ K E Func D L
cofidval.o φ K L func F G = I
cofidf1.c C = Base E
Assertion cofidf1 φ F : B 1-1 C K : C onto B

Proof

Step Hyp Ref Expression
1 cofidval.i I = id func D
2 cofidval.b B = Base D
3 cofidval.f φ F D Func E G
4 cofidval.k φ K E Func D L
5 cofidval.o φ K L func F G = I
6 cofidf1.c C = Base E
7 2 6 3 funcf1 φ F : B C
8 eqid Hom D = Hom D
9 1 2 3 4 5 8 cofidval φ K F = I B x B , y B F x L F y x G y = z B × B I Hom D z
10 9 simpld φ K F = I B
11 fcof1 F : B C K F = I B F : B 1-1 C
12 7 10 11 syl2anc φ F : B 1-1 C
13 6 2 4 funcf1 φ K : C B
14 fcofo K : C B F : B C K F = I B K : C onto B
15 13 7 10 14 syl3anc φ K : C onto B
16 12 15 jca φ F : B 1-1 C K : C onto B