Metamath Proof Explorer


Theorem cofu1a

Description: Value of the object part of the functor composition. (Contributed by Zhi Wang, 16-Nov-2025)

Ref Expression
Hypotheses cofu1a.b B = Base C
cofu1a.f φ F C Func D G
cofu1a.k φ K D Func E L
cofu1a.m φ K L func F G = M N
cofu1a.x φ X B
Assertion cofu1a φ K F X = M X

Proof

Step Hyp Ref Expression
1 cofu1a.b B = Base C
2 cofu1a.f φ F C Func D G
3 cofu1a.k φ K D Func E L
4 cofu1a.m φ K L func F G = M N
5 cofu1a.x φ X B
6 df-br F C Func D G F G C Func D
7 2 6 sylib φ F G C Func D
8 df-br K D Func E L K L D Func E
9 3 8 sylib φ K L D Func E
10 1 7 9 5 cofu1 φ 1 st K L func F G X = 1 st K L 1 st F G X
11 4 fveq2d φ 1 st K L func F G = 1 st M N
12 7 9 cofucl φ K L func F G C Func E
13 4 12 eqeltrrd φ M N C Func E
14 df-br M C Func E N M N C Func E
15 13 14 sylibr φ M C Func E N
16 15 func1st φ 1 st M N = M
17 11 16 eqtrd φ 1 st K L func F G = M
18 17 fveq1d φ 1 st K L func F G X = M X
19 3 func1st φ 1 st K L = K
20 2 func1st φ 1 st F G = F
21 20 fveq1d φ 1 st F G X = F X
22 19 21 fveq12d φ 1 st K L 1 st F G X = K F X
23 10 18 22 3eqtr3rd φ K F X = M X