Metamath Proof Explorer


Theorem cononrel1

Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020)

Ref Expression
Assertion cononrel1 A A -1 -1 B =

Proof

Step Hyp Ref Expression
1 cnvco A A -1 -1 B -1 = B -1 A A -1 -1 -1
2 cnvnonrel A A -1 -1 -1 =
3 2 coeq2i B -1 A A -1 -1 -1 = B -1
4 co02 B -1 =
5 1 3 4 3eqtri A A -1 -1 B -1 =
6 5 cnveqi A A -1 -1 B -1 -1 = -1
7 relco Rel A A -1 -1 B
8 dfrel2 Rel A A -1 -1 B A A -1 -1 B -1 -1 = A A -1 -1 B
9 7 8 mpbi A A -1 -1 B -1 -1 = A A -1 -1 B
10 cnv0 -1 =
11 6 9 10 3eqtr3i A A -1 -1 B =