Metamath Proof Explorer


Theorem cononrel1

Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020)

Ref Expression
Assertion cononrel1 AA-1-1B=

Proof

Step Hyp Ref Expression
1 cnvco AA-1-1B-1=B-1AA-1-1-1
2 cnvnonrel AA-1-1-1=
3 2 coeq2i B-1AA-1-1-1=B-1
4 co02 B-1=
5 1 3 4 3eqtri AA-1-1B-1=
6 5 cnveqi AA-1-1B-1-1=-1
7 relco RelAA-1-1B
8 dfrel2 RelAA-1-1BAA-1-1B-1-1=AA-1-1B
9 7 8 mpbi AA-1-1B-1-1=AA-1-1B
10 cnv0 -1=
11 6 9 10 3eqtr3i AA-1-1B=