Metamath Proof Explorer


Theorem cores2

Description: Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006)

Ref Expression
Assertion cores2 domACAB-1C-1=AB

Proof

Step Hyp Ref Expression
1 dfdm4 domA=ranA-1
2 1 sseq1i domACranA-1C
3 cores ranA-1CB-1CA-1=B-1A-1
4 2 3 sylbi domACB-1CA-1=B-1A-1
5 cnvco AB-1C-1-1=B-1C-1-1A-1
6 cocnvcnv1 B-1C-1-1A-1=B-1CA-1
7 5 6 eqtri AB-1C-1-1=B-1CA-1
8 cnvco AB-1=B-1A-1
9 4 7 8 3eqtr4g domACAB-1C-1-1=AB-1
10 9 cnveqd domACAB-1C-1-1-1=AB-1-1
11 relco RelAB-1C-1
12 dfrel2 RelAB-1C-1AB-1C-1-1-1=AB-1C-1
13 11 12 mpbi AB-1C-1-1-1=AB-1C-1
14 relco RelAB
15 dfrel2 RelABAB-1-1=AB
16 14 15 mpbi AB-1-1=AB
17 10 13 16 3eqtr3g domACAB-1C-1=AB