| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sq1 |  | 
						
							| 2 | 1 | oveq1i |  | 
						
							| 3 | 2 | oveq2i |  | 
						
							| 4 |  | 2cn |  | 
						
							| 5 |  | 3cn |  | 
						
							| 6 |  | 3ne0 |  | 
						
							| 7 | 4 5 6 | divreci |  | 
						
							| 8 | 3 7 | eqtr4i |  | 
						
							| 9 | 8 | oveq2i |  | 
						
							| 10 |  | ax-1cn |  | 
						
							| 11 | 4 5 6 | divcli |  | 
						
							| 12 | 5 6 | reccli |  | 
						
							| 13 |  | df-3 |  | 
						
							| 14 | 13 | oveq1i |  | 
						
							| 15 | 5 6 | dividi |  | 
						
							| 16 | 4 10 5 6 | divdiri |  | 
						
							| 17 | 14 15 16 | 3eqtr3ri |  | 
						
							| 18 | 10 11 12 17 | subaddrii |  | 
						
							| 19 | 9 18 | eqtri |  | 
						
							| 20 |  | 1re |  | 
						
							| 21 |  | 0lt1 |  | 
						
							| 22 |  | 1le1 |  | 
						
							| 23 |  | 0xr |  | 
						
							| 24 |  | elioc2 |  | 
						
							| 25 | 23 20 24 | mp2an |  | 
						
							| 26 |  | cos01bnd |  | 
						
							| 27 | 25 26 | sylbir |  | 
						
							| 28 | 20 21 22 27 | mp3an |  | 
						
							| 29 | 28 | simpli |  | 
						
							| 30 | 19 29 | eqbrtrri |  | 
						
							| 31 | 28 | simpri |  | 
						
							| 32 | 2 | oveq2i |  | 
						
							| 33 | 10 12 11 | subadd2i |  | 
						
							| 34 | 17 33 | mpbir |  | 
						
							| 35 | 32 34 | eqtri |  | 
						
							| 36 | 31 35 | breqtri |  | 
						
							| 37 | 30 36 | pm3.2i |  |