Metamath Proof Explorer


Theorem cosatanne0

Description: The arctangent function has range contained in the domain of the tangent. (Contributed by Mario Carneiro, 3-Apr-2015)

Ref Expression
Assertion cosatanne0 AdomarctancosarctanA0

Proof

Step Hyp Ref Expression
1 cosatan AdomarctancosarctanA=11+A2
2 ax-1cn 1
3 atandm4 AdomarctanA1+A20
4 3 simplbi AdomarctanA
5 4 sqcld AdomarctanA2
6 addcl 1A21+A2
7 2 5 6 sylancr Adomarctan1+A2
8 7 sqrtcld Adomarctan1+A2
9 7 sqsqrtd Adomarctan1+A22=1+A2
10 3 simprbi Adomarctan1+A20
11 9 10 eqnetrd Adomarctan1+A220
12 sqne0 1+A21+A2201+A20
13 8 12 syl Adomarctan1+A2201+A20
14 11 13 mpbid Adomarctan1+A20
15 8 14 recne0d Adomarctan11+A20
16 1 15 eqnetrd AdomarctancosarctanA0