Metamath Proof Explorer


Theorem cosneg

Description: The cosines of a number and its negative are the same. (Contributed by NM, 30-Apr-2005)

Ref Expression
Assertion cosneg AcosA=cosA

Proof

Step Hyp Ref Expression
1 negicn i
2 mulcl iAiA
3 1 2 mpan AiA
4 efcl iAeiA
5 3 4 syl AeiA
6 ax-icn i
7 mulcl iAiA
8 6 7 mpan AiA
9 efcl iAeiA
10 8 9 syl AeiA
11 mulneg12 iAiA=iA
12 6 11 mpan AiA=iA
13 12 eqcomd AiA=iA
14 13 fveq2d AeiA=eiA
15 mul2neg iAiA=iA
16 6 15 mpan AiA=iA
17 16 fveq2d AeiA=eiA
18 14 17 oveq12d AeiA+eiA=eiA+eiA
19 5 10 18 comraddd AeiA+eiA=eiA+eiA
20 19 oveq1d AeiA+eiA2=eiA+eiA2
21 negcl AA
22 cosval AcosA=eiA+eiA2
23 21 22 syl AcosA=eiA+eiA2
24 cosval AcosA=eiA+eiA2
25 20 23 24 3eqtr4d AcosA=cosA