Metamath Proof Explorer


Theorem cosselcnvrefrels2

Description: Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 25-Aug-2021)

Ref Expression
Assertion cosselcnvrefrels2 RCnvRefRelsRIRRels

Proof

Step Hyp Ref Expression
1 elcnvrefrels2 RCnvRefRelsRIdomR×ranRRRels
2 cossssid RIRIdomR×ranR
3 2 anbi1i RIRRelsRIdomR×ranRRRels
4 1 3 bitr4i RCnvRefRelsRIRRels