Metamath Proof Explorer


Theorem cossssid5

Description: Equivalent expressions for the class of cosets by R to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion cossssid5 RIxranRyranRx=yxR-1yR-1=

Proof

Step Hyp Ref Expression
1 cossssid4 RIu*xuRx
2 ineccnvmo2 xranRyranRx=yxR-1yR-1=u*xuRx
3 1 2 bitr4i RIxranRyranRx=yxR-1yR-1=