Metamath Proof Explorer


Theorem cotcl

Description: The closure of the cotangent function with a complex argument. (Contributed by David A. Wheeler, 15-Mar-2014)

Ref Expression
Assertion cotcl AsinA0cotA

Proof

Step Hyp Ref Expression
1 cotval AsinA0cotA=cosAsinA
2 coscl AcosA
3 2 adantr AsinA0cosA
4 sincl AsinA
5 4 adantr AsinA0sinA
6 simpr AsinA0sinA0
7 3 5 6 divcld AsinA0cosAsinA
8 1 7 eqeltrd AsinA0cotA