Metamath Proof Explorer


Theorem cphipcl

Description: An inner product is a member of the complex numbers. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses nmsq.v V=BaseW
nmsq.h ,˙=𝑖W
Assertion cphipcl WCPreHilAVBVA,˙B

Proof

Step Hyp Ref Expression
1 nmsq.v V=BaseW
2 nmsq.h ,˙=𝑖W
3 eqid ScalarW=ScalarW
4 eqid BaseScalarW=BaseScalarW
5 3 4 cphsubrg WCPreHilBaseScalarWSubRingfld
6 cnfldbas =Basefld
7 6 subrgss BaseScalarWSubRingfldBaseScalarW
8 5 7 syl WCPreHilBaseScalarW
9 8 3ad2ant1 WCPreHilAVBVBaseScalarW
10 cphphl WCPreHilWPreHil
11 3 2 1 4 ipcl WPreHilAVBVA,˙BBaseScalarW
12 10 11 syl3an1 WCPreHilAVBVA,˙BBaseScalarW
13 9 12 sseldd WCPreHilAVBVA,˙B