Description: An inner product is a member of the complex numbers. (Contributed by Mario Carneiro, 13-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nmsq.v | |
|
nmsq.h | |
||
Assertion | cphipcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmsq.v | |
|
2 | nmsq.h | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | 3 4 | cphsubrg | |
6 | cnfldbas | |
|
7 | 6 | subrgss | |
8 | 5 7 | syl | |
9 | 8 | 3ad2ant1 | |
10 | cphphl | |
|
11 | 3 2 1 4 | ipcl | |
12 | 10 11 | syl3an1 | |
13 | 9 12 | sseldd | |