Metamath Proof Explorer


Theorem cphorthcom

Description: Orthogonality (meaning inner product is 0) is commutative. Complex version of iporthcom . (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses cphipcj.h ,˙=𝑖W
cphipcj.v V=BaseW
Assertion cphorthcom WCPreHilAVBVA,˙B=0B,˙A=0

Proof

Step Hyp Ref Expression
1 cphipcj.h ,˙=𝑖W
2 cphipcj.v V=BaseW
3 cphphl WCPreHilWPreHil
4 eqid ScalarW=ScalarW
5 eqid 0ScalarW=0ScalarW
6 4 1 2 5 iporthcom WPreHilAVBVA,˙B=0ScalarWB,˙A=0ScalarW
7 3 6 syl3an1 WCPreHilAVBVA,˙B=0ScalarWB,˙A=0ScalarW
8 cphclm WCPreHilWCMod
9 4 clm0 WCMod0=0ScalarW
10 8 9 syl WCPreHil0=0ScalarW
11 10 3ad2ant1 WCPreHilAVBV0=0ScalarW
12 11 eqeq2d WCPreHilAVBVA,˙B=0A,˙B=0ScalarW
13 11 eqeq2d WCPreHilAVBVB,˙A=0B,˙A=0ScalarW
14 7 12 13 3bitr4d WCPreHilAVBVA,˙B=0B,˙A=0